1105 Spiral Matrix (25分)

1 题目

1105 Spiral Matrix (25分)
This time your job is to fill a sequence of N positive integers into a spiral matrix in non-increasing order. A spiral matrix is filled in from the first element at the upper-left corner, then move in a clockwise spiral. The matrix has m rows and n columns, where m and n satisfy the following: m×n must be equal to N; m≥n; and m−n is the minimum of all the possible values.

Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N. Then the next line contains N positive integers to be filled into the spiral matrix. All the numbers are no more than 10
​4
​​ . The numbers in a line are separated by spaces.

Output Specification:
For each test case, output the resulting matrix in m lines, each contains n numbers. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:
12
37 76 20 98 76 42 53 95 60 81 58 93

      
    
Sample Output:
98 95 93
42 37 81
53 20 76
58 60 76

2 解析

2.1 题意

模拟输出非递增的顺时针螺旋矩阵,矩阵的行数大于列数,且行数乘以列数要等于元素个数,且m-n最小

2.2 思路

  • 1 求矩阵的行m和列n
    • 题目要求行数要大于列数,且行数和列数之差最小;
    • 当元素个数N为素数时,行数=N,列数=1;
    • 当元素个数N为完全二次方数时,行数= N \sqrt{N} N =列数;
    • 因此行数m最小为 N \sqrt{N} N ,列数n最小为1;
    • 为了使得m和n差值最小,因此枚举行数m,从 N \sqrt{N} N 开始递增枚举,直到N可以整除m,此时n为N\m(或者枚举列数n,从从 N \sqrt{N} N 开始递减枚举);
  • 2 模拟填充矩阵,设矩阵的上下左右的边界分别为U= 1, D = m,L = 1,R = n,填充坐标为(x= 1,y = 0);(输出的数组元素下标从1开始,方便计算)
    • 从 左上角开始填充(边填充边缩小矩阵的大小),同时统计填充的个数num:
    • 首先向右填充,当x==R时,上边界U加1,向下填充;
    • 当y==D时,右边界减1,,向左填充;
    • 当x==L时,下边界加1,向上填充;
    • 当y==D时,左边界加1;
    • 当num小于等于N时,不断执行上面四个步骤。
  • 3 特殊情况特殊处理,当N为1时,直接输出,当N为素数时,排序后,由于列数为1,于是直接输出就可以(每输出一个元素,换一行)。

3 参考代码

#include <cstdio>
#include <algorithm>
#include <cmath>

using std::sort;

const int MAXN = 10010;
int A[MAXN];
int matrix[MAXN][MAXN];

bool cmp(int a, int b){
    return a > b;
}

int main(int argc, char const *argv[])
{
    int N;
    scanf("%d", &N);
    for (int i = 1; i <= N; ++i)
    {
        scanf("%d", &A[i]);
    }
    if(N == 1){
        printf("%d", A[1]);
        return 0;
    }

    sort(A + 1, A + N + 1, cmp);

    int m, n;
    for (int i = ceil(sqrt(1.0 * N)); i <= N; ++i)
    {
        if(N % i == 0){
            m = i;
            n = N / i;
            break;
        }
    }

    if(n == 1){
        for (int i = 1; i <= N; ++i) {
            printf("%d\n", A[i]);
        }
    }else{
        int U = 1, D = m, L = 1, R = n;
        int num = 1;
        int x = 1, y = 0;

        while(num <= N){
            while(num <= N && y < R){
                matrix[x][++y] = A[num++];
            }
            U += 1;

            while(num <= N && x < D){
                matrix[++x][y] = A[num++];
            }
            R -= 1;

            while(num <= N && y > L){
                matrix[x][--y] = A[num++];
            }
            D -= 1;

            while(num <= N && x > U){
                matrix[--x][y] = A[num++];
            }
            L += 1;

            if(num == N){
                matrix[x][y + 1] = A[num];
                num++;
            }
        }

        for (int i = 1; i <= m; ++i)
        {
            for (int j = 1; j <= n; ++j)
            {
                printf("%d", matrix[i][j]);
                if(j < n) printf(" ");
            }
            printf("\n");
        }
    }


    return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 岁月 设计师:pinMode 返回首页