0 效果
难点:如何判断为中间数
1 题目
问题描述
在一个整数序列a1, a2, …, an中,如果存在某个数,大于它的整数数量等于小于它的整数数量,则称其为中间数。在一个序列中,可能存在多个下标不相同的中间数,这些中间数的值是相同的。
给定一个整数序列,请找出这个整数序列的中间数的值。
输入格式
输入的第一行包含了一个整数n,表示整数序列中数的个数。
第二行包含n个正整数,依次表示a1, a2, …, an。
输出格式
如果约定序列的中间数存在,则输出中间数的值,否则输出-1表示不存在中间数。
样例输入
6
2 6 5 6 3 5
样例输出
5
样例说明
比5小的数有2个,比5大的数也有2个。
样例输入
4
3 4 6 7
样例输出
-1
样例说明
在序列中的4个数都不满足中间数的定义。
样例输入
5
3 4 6 6 7
样例输出
-1
样例说明
在序列中的5个数都不满足中间数的定义。
评测用例规模与约定
对于所有评测用例,1 ≤ n ≤ 1000,1 ≤ ai ≤ 1000。
2 思路
输入值,
- 1 每次存储输入值的出现次数
- 2 进行排序
- 3 用n减去排序后的数字的中间数字(即n/2),再%2取模
- 如果值是2的倍数,则说明中间数的左右两边的数都是相等(因为无论左右两边的数是奇数个还是偶数个,乘以2后都是偶数),则输出n/2
- 否则,输出-1
3 代码
#include<cstdio>
#include<vector>
#include<algorithm>
const int MAXN = 1010;
int hashTable[MAXN] = {0};
std::vector<int> A;
int main(){
int n, num;
scanf("%d", &n);
for(int i = 0; i < n;i++){
scanf("%d", &num);
hashTable[num]++;
A.push_back(num);
}
std::sort(A.begin(), A.end());
if((n - hashTable[A[n/2]]) % 2 == 0){
printf("%d", A[n/2]);
}else{
printf("-1");
}
return 0;
}