第六届蓝桥杯C++B组:垒骰子

 

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。

「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」
2 1
1 2

「样例输出」
544

「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36


资源约定:
峰值内存消耗 < 256M
CPU消耗  < 2000ms


请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。

参考代码(递归):

//超时
#include<cstdio>
#define MOD 1000000007

int op[7];
bool confilct[7][7];
void init(){
    op[1] = 4;
    op[4] = 1;
    op[2] = 5;
    op[5] = 2;
    op[3] = 6;
    op[6] = 3;
}
int n,m;

long long int f(int up, int count){
    if(count == 0)
        return 4;
    long long ans = 0;
    for (int upp = 1; upp <= 6; ++upp) {
        if(confilct[op[up]][upp]) continue;
        ans = (ans + f(upp, count - 1)) % MOD;
    }
    return ans;
}

int main(){
    init();
    scanf("%d%d", &n, &m);
    for (int i = 0; i < m; ++i) {
        int x, y;
        scanf("%d%d",&x, &y);
        confilct[y][x] = true;
        confilct[x][y] = true;
    }
    long long ans = 0;
    for (int up = 1; up <= 6; ++up) {
       ans =(ans + 4 * f(up, n - 1)) % MOD;//up:面上的点数,n-1ge骰子
    }
    printf("%lli\n", ans);
    return 0;
}

参考代码2(动态规划):

//动规
#include<cstdio>
#include<map>

using namespace std;

#define MOD 1000000007

typedef long long LL;
LL dp[2][7];//dp[i][j]表示有i层,限定朝上的数字为j的稳定方案数
int n, m;
bool conflict[7][7];
map<int ,int > op;

void init(){
    op[1] = 4;
    op[4] = 1;
    op[2] = 5;
    op[5] = 2;
    op[3] = 6;
    op[6] = 3;
}

int main(){
    init();
    scanf("%d%d", &n, &m);
    for (int i = 0; i < m; ++i) {
        int a, b;
        scanf("%d%d", &a, &b);
        conflict[a][b] = true;
        conflict[b][a] = true;
    }

    for (int j = 1; j <= 6; ++j) {
        dp[0][j] = 1;
    }

    int cur = 0;
    //迭代层数
    for (int level = 2; level <= n; ++level) {
        cur = 1 - cur;
        //尝试将6个面放在当前一层朝上的方向
        for (int j = 1; j <= 6; ++j) {
            dp[cur][j] = 0;
            //将与op[j]不冲突的上一层格子里面的数累加起来
            for (int i = 1; i <= 6; ++i) {
                if(conflict[op[j]][i]) continue;
                dp[cur][j] = (dp[cur][j] + dp[1 - cur][i]) % MOD;
            }
        }
    }

    LL sum = 0;
    for (int k = 1; k <= 6; ++k) {
        sum = (sum + dp[cur][k]) % MOD;
    }

    //快速幂 求4的n次方
    LL ans = 1;
    LL tmp = 4;
    LL p = n;

    while(p){
        if(p & 1) ans =(ans * tmp) % MOD;
        tmp = (tmp * tmp) % MOD;
        p >>= 1;
    }
    printf("%lld\n", (sum * ans) % MOD);
    return 0;
}


参考代码3(矩阵的乘法):

#include<cstdio>
#include<map>

using namespace std;

#define MOD 1000000007

typedef long long LL;
LL dp[2][7];//dp[i][j]表示有i层,限定朝上的数字为j的稳定方案数
int n, m;
bool conflict[7][7];
map<int ,int > op;

void init(){
    op[1] = 4;
    op[4] = 1;
    op[2] = 5;
    op[5] = 2;
    op[3] = 6;
    op[6] = 3;
}

struct M{
    LL a[6][6];

    M(){
        for (int i = 0; i < 6; ++i) {
            for (int j = 0; j < 6; ++j) {
                a[i][j] = 1;
            }
        }
    }
};

M mMultiply(M m1, M m2){//矩阵的乘法
    M ans;

    for (int i = 0; i < 6; ++i) {//ai_k * ak_j
        for (int j = 0; j < 6; ++j) {
            ans.a[i][j] = 0;
            for (int k = 0; k < 6; ++k) {
                ans.a[i][j] =(ans.a[i][j] + m1.a[i][k] * m2.a[k][j]) % MOD;
            }
        }
    }
    return  ans;
}

M mPow(M m, int k){
    M ans;//单位矩阵
    for (int i = 0; i < 6; ++i) {//对角线为1,其余为0
        for (int j = 0; j < 6; ++j) {
            if(i == j) ans.a[i][j] = 1;
            else ans.a[i][j] = 0;
        }
    }
    while(k){
        if(k & 1){
            ans = mMultiply(ans,m);
        }
        m = mMultiply(m, m);
        k >>= 1;
    }
    return  ans;
}

int main(){
    init();
    scanf("%d%d", &n, &m);
    M cMatrix;//冲突矩阵
    for (int i = 0; i < m; ++i) {
        int a, b;
        scanf("%d%d", &a, &b);
        cMatrix.a[op[a] - 1][b -1] = 0;//冲突面的对立面不能在一起
        cMatrix.a[op[b] - 1][a - 1] = 0;
    }

    M cMatrix_n_1 = mPow(cMatrix,n-1);//冲突矩阵的n-1次方

    LL ans = 0;
    for (int j = 0; j < 6; ++j) {
        for (int i = 0; i < 6; ++i) {
            ans = (ans + cMatrix_n_1.a[i][j]) % MOD;
        }
    }

    //快速幂求4的n次方
    LL t =1;
    LL tmp = 4;
    LL p = n;
    while(p){
        if(p & 1){
            t = t * tmp % MOD;
        }
        tmp = tmp * tmp % MOD;
        p >>= 1;
    }
    printf("%lld",ans * t % MOD);

    return 0;
}

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 岁月 设计师:pinMode 返回首页